Abstract
We describe herein that amphiphilic semiconductor nanocrystals (NCs) self-assembled into network structures with heterogeneous compositions. The semiconductor nanorods and tetrapods were subjected to ligand exchange with short-chained water-soluble thiolates, giving an amphiphilic surface pattern with a hydrophilic wall and hydrophobic tips. The amphiphilic NCs self-assembled through hydrophobic effects between tip-surfaces in water. The hydrophobic effect-facilitated self-assembly of NCs was well reproduced by a dissipative particle dynamics simulation. The amphiphilic self-assembly of NCs was demonstrated regardless of NC-shapes and compositions to give semiconductor NC-network structures with heterogeneous compositions. The tandem connection of luminescent core/shell nanorods demonstrated energy transfer between the nanorods in the self-assembly.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.