Abstract
The weak interfacial binding affinities of the inorganic perovskite core with ligands and high density of surface defect states induce the facile detachment of surface ligands from nanocrystals (NCs), resulting in their poor colloidal stability and fluorescence in aqueous. In this work, a powerful ligand engineering strategy was proposed for eliminating the surface defects and aggregation of the NCs. Using an amphiphilic polymer octylamine-modified polyacrylic acid (OPA) as a capping ligand, the as-synthesized CsPbBr3 NCs retain high photoluminescence intensity and stability by the modified ligand-assisted reprecipitation method. The increase in the fluorescence lifetime and NC size could also be observed, and how the NC particle size influences fluorescence lifetime was further studied. In addition, the water stability, photostability, and thermal stability were significantly improved, and the fluorescence of NCs can maintain 80.13% of the original value in water for 15 d. We further validated that the strong binding affinity of OPA and oleylamine ligands with CsPbBr3 NCs leads to a reduction in surface trap states, and a large amount of carboxyl groups of the OPA made the NCs preserve good water solubility. In addition, the OPA has the ability of adjusting the particle size of NCs. Furthermore, a wavelength-shifted colorimetric sensor based on these NCs was constructed for detection of Cl- in sweat, which enables the rapid and visual detection of Cl- with high accuracy and stability. Overall, these CsPbBr3 NCs synthesized by the ligand engineering strategy validated their wide applications in biomedical sensing fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.