Abstract

Amphiphilic derivatives of phenylalanine (ADFs) have strong self-assembling propensities and yield low molecular weight hydrogels on multiple occassions. The interaction of ADFs with metal ions can result in the morphological changes in the self-assemblies. Herein, we report the interesting consequences of the interaction between four N-protected ADFs with Au(iii) ions. In the case of ADF 1, the original nanofibrillar morphology of the self-assemblies spontaneously transformed into uniform nanoglobules of ∼80 nm in diameter upon addition of Au(iii) ions. A subsequent reduction of the Au(iii) ions to Au(0) nanoparticles (AuNPs) and the surface decoration of the nanoglobules with AuNPs were observed in the course of the next six to eight hours. Simultaneously, multiple reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), hydroxyl radicals (˙OH), singlet oxygen and superoxide ions were also found to be present in the reaction medium. These ROS originate from water used as the reaction medium. The ROS production and the reduction of Au(iii) were inhibited upon deaeration of the reaction medium and the use of heavy water (D2O) or organic solvents as the reaction medium, while an increase in the pH of the aqueous medium intensified both these processes. We exploited the temporal ROS generation using the mixture of 1 and Au(iii) ions towards anticancer therapy by enhancing the intracellular ROS levels. It is expected that this effort can be expanded into a viable anticancer therapy in the near future by modulating the amount and the rate of ROS-generation through judicious choice of the peptidic ligands and metal ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.