Abstract

Nano-delivery systems play an important role in the development of nutritional supplements due to their efficient encapsulation and delivery properties for nutrients. Herein, we prepared protein-polysaccharide nanoparticles as a novel amphiphilic nano-delivery system based on gallic acid modified chitosan (GCS) and ovalbumin (OVA) by pH-driven and calcium ion crosslinking. The nanoparticles loaded with hydrophilic riboflavin (Rib) and hydrophobic quercetin (Que) as nutrient models were abbreviated as GCS-OVA-Rib NPs and GCS-OVA-Que NPs, respectively. Their encapsulation efficiencies for Rib and Que. were 66.36 % and 96.61 %, respectively. In addition, GCS-OVA-Rib NPs and GCS-OVA-Que NPs showed antioxidant activity as well as good stability and delivery capacity for Rib and Que. in simulated digestion with release ratios of 78.38 % and 84.15 %, respectively. More importantly, GCS-OVA-Rib/Que. NPs performed good biocompatibility for further applications. Overall, this work provides some useful insights for the design of novel amphiphilic nano-delivery systems based on polysaccharides and proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call