Abstract

Removal of radioactive uranyl ions (UO22+) from water by effective adsorbents is highly desired but remains a challenge. UO22+ are easily combined with H2O, and the polarization of H2O affects the complexation between UO22+ and the adsorbent. Thus, it is necessary to reconstruct the UO22+ active site to improve the adsorption capacity. Herein ,an amphiphilic ligand, namely N, N-dimethyl-9-decenamide (NND), is successfully prepared. NND replace H2O in [UO2(H2O)5]2+ by hydrogen bonding, thereby enhancing the adsorption capacity of MoS2 particles in the reconstituted UO22+ active sites. The predicted maximum adsorption capacity increased from 50.7 to 500.7mgg-1 (by a factor of 9.87) with the presence of NND, which is higher than other functional group-modified MoS2 adsorbents. Furthermore, NND and MoS2 can retain UO22+ uptake under extreme conditions including high acid-base and gamma irradiation. Theoretical Calculations of NND through H bonding produces an increased amount of charge transfer and a reduced adsorption energy between UO22+ and MoS2, which weakens the polarization effect of H2O. The findings showed that NND appeared to be a promising amphiphilic to improve the adsorption efficiency of UO22+ from water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.