Abstract
An organic electrochemical transistor (OECT) is one of the promising devices for bioelectronics due to its high transconductance, encompassing low operation voltage, and good compatibility with aqueous conditions. Despite these advantages, the challenge of balancing ion penetration and electron transport remains a significant issue in OECTs. Herein, we present an amphiphilic interface modification strategy to successfully prepare OECTs in aqueous conditions based on a high-mobility hydrophobic polypyrrole derivative. An amphiphilic interface mixed with an amphiphilic polymer and the active layer markedly promotes ion penetration and results in a significant improvement in performance, with the switch time reduced from several seconds to nearly 100 ms and the transconductance increased by an order of magnitude. The high-performance OECTs fabricated by this method show promising applications in high-performance neuromorphic devices and ECG recording in advancing the field of electrochemical transistors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.