Abstract

Amphiphilic graft copolymers having ultrahigh molecular weight poly(styrene- alt-maleic anhydride) (SMA) backbones and methoxyl poly(ethylene glycol) (MPEG) grafts were synthesized via the esterification between anhydride groups with hydroxyl groups. The synthesized graft copolymers, SMA- g-MPEGs, were used as additives in the preparation of polyethersulfone (PES) membranes via phase inversion process. X-ray photoelectron spectroscopy (XPS) analysis showed the comb-like graft copolymers spontaneously segregated to membrane surface during membrane formation. Water contact angle measurements and water absorbance experiments indicated the PES/SMA- g-MPEG blend membranes were much more hydrophilic than pure PES membrane. The blend membranes had stronger protein adsorption resistance than pure PES membrane did. After washed using de-ionized water for 25 days, the blend membranes exhibited higher hydrophilicity and stronger protein adsorption resistance. This phenomenon was attributed to the further accumulation of SMA- g-MPEG additives on membrane surface in aqueous conditions. SMA- g-MPEGs can be well preserved in membrane near-surface and not lost during membrane washing due to their high molecular weight and comb-like architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.