Abstract

The unique self-assembly properties of unimer micelles are exploited for the preparation of fluorescent nanocarriers embedding hydrophobic fluorophores. Unimer micelles are constituted by a (meth)acrylate copolymer with oligoethyleneglycol and perflurohexylethyl side chains (PEGMA90-co-FA10) in which the hydrophilic and hydrophobic comonomers are statistically distributed along the polymeric backbone. Thanks to hydrophobic interactions in water, the amphiphilic copolymer forms small nanoparticles (<10 nm), with tunable properties and functionality. An easy procedure for the encapsulation of a small hydrophobic molecule (C153 fluorophore) within unimer micelles is presented. UV-vis, fluorescence, and fluorescence anisotropy spectroscopic experimental data demonstrate that the fluorophore is effectively embedded in the nanocarriers. Moreover, the nanocarrier positively contributes to preserve the good emissive properties of the fluorophore in water. The efficacy of the dye-loaded nanocarrier as a fluorescent probe is tested in two-photon imaging of thick ex vivo porcine scleral tissue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call