Abstract

A systematic series of 16 amphiphilic bottlebrush block copolymers (BCPs) containing polystyrene and poly(N-acryloylmorpholine) (PACMO) side chains were prepared by a combination of atom-transfer radical polymerization (ATRP), photoiniferter polymerization, and ring-opening metathesis polymerization (ROMP). The grafting-through method used to prepare the polymers enabled a high degree of control over backbone and side-chain molar masses for each block. Surface tension measurements on the self-assembled amphiphilic bottlebrush BCPs in water revealed an ultralow critical micelle concentration (cmc), 1–2 orders of magnitude lower than linear BCP analogues on a molar basis, even for micelles with >90% PACMO content. Combined with coarse-grained molecular dynamics simulations, fitting of small-angle neutron scattering traces (SANS) allowed us to evaluate solution conformations for individual bottlebrush BCPs and micellar nanostructures for self-assembled macromolecules. Bottlebrush BCPs showed an increase in a...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call