Abstract
Macrosurfactants consisting of water-soluble poly(vinylcaprolactam) (PVCap) or poly(vinylpyrrolidone) (PVP) segments with comparatively shorter hydrophobic poly(styrene) (PS) or poly(2,3,4,5,6-pentafluorostyrene) (PPFS) segments were used as kinetic hydrate inhibitors (KHIs). These were synthesized with 2-cyanopropan-2-yl N-methyl-N-(pyridin-4-yl)dithiocarbamate switchable reversible addition–fragmentation chain transfer (RAFT) agent at 60 °C or 90 °C for 1-P(S/PFS) or 1-PVCap, respectively, followed by chain extension at 90 °C or 70 °C with PVCap or PVP, respectively. The addition of PVCap to the pure methane-water system resulted in a 53% reduction of methane consumption (comparable to PVP with 51% inhibition) during the initial growth phase. A PS-PVCap block copolymer comprised of 10 mol% PS and 90 mol% PVCap improved inhibition to 56% compared to the pure methane-water system with no KHIs. Substituting PS with a more hydrophobic PPFS segment further improved inhibition to 73%. By increasing the ratio of the hydrophobic PS- to PVCap- groups in the polymer, an increase of its inhibition potential was measured. For PPFS-PVCap, an increase of PPFS ratio from 5% to 10% decreased the methane formation rate by 6%. However, PPFS-PVCap block copolymers with more than 20 mol% PPFS were unable to dissolve in water due to increase in hydrophobicity and the attendant low critical micelle concentration (CMC).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.