Abstract

Nanoparticles (NPs) containing light-responsive polymers and imaging agents show great promise for controlled drug delivery. However, most light-responsive NPs rely on short-wavelength excitation, resulting in poor tissue penetration and potential cytotoxicity. Moreover, excessively sensitive NPs may prematurely release drugs during storage and circulation, diminishing their efficacy and causing off-target toxicity. Herein, we report visible-light-responsive NPs composed of an amphiphilic block copolymer containing responsive 4-acrylamide benzenesulfonyl azide (ABSA) and hydrophilic N,N'-dimethylacrylamide (DMA) units. The polymer pDMA-ABSA was loaded with the chemotherapy drug dasatinib and zinc tetraphenylporphyrin (ZnTPP). ZnTPP acted as an imaging reagent and a photosensitizer to reduce ABSA upon visible light irradiation, converting hydrophobic units to hydrophilic units and disrupting NPs to trigger drug release. These NPs enabled real-time fluorescence imaging in cells and exhibited synergistic chemophotodynamic therapy against multiple cancer cell lines. Our light-responsive NP platform holds great promise for controlled drug delivery and cancer theranostics, circumventing the limitations of traditional photosensitive nanosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call