Abstract

A wide variety of structurally different antihaemolytic amphiphiles were tested for their ability to induce exovesiculation (acetylcholinesterase (AChE) release, transmission electron microscopic (TEM) studies), endovesiculation (fluorescein isothiocyanate conjugated dextran (FITC-dextran) internalization, TEM studies) and shape changes in human erythrocytes at concentrations where they exert maximum protection against hypotonic haemolysis. The results show that vesiculation is a common phenomenon induced by amphiphiles in erythrocytes. Sphero-echinocytogenic amphiphiles induced exovesiculation, whereas stomatocytogenic amphiphiles induced endovesiculation. The antihaemolytic potency of the amphiphiles was not related to their ability to induce exo- or endovesiculation, or to the type or extent of shape changes induced, and it could not be ascribed to any molecular feature of the amphiphiles or to their charge. It is proposed that amphiphiles, when intercalated into the lipid bilayer of the membrane, rapidly induce rearrangements within the bilayer and that these rearrangements are associated with an increase in the permeability of the membrane; it is suggested that a rapid efflux of ions decreases the difference in osmotic pressure between cell interior and hypotonic buffer, thereby protecting cells from being lysed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.