Abstract

Curvature sensing is an essential ability of biomolecules to preferentially localize to membrane regions of a specific curvature. It has been shown that amphipathic helices (AHs), helical peptides with both hydrophilic and hydrophobic regions, could sense a positive membrane curvature. The origin of this AH sensing has been attributed to their ability to exploit lipid-packing defects that are enhanced in regions of positive curvature. In this study, we revisit an alternative framework where AHs act as sensors of local internal stress within the membrane, suggesting the possibility of an AH sensing a negative membrane curvature. Using molecular dynamics simulations, we gradually tuned the hydrophobicity of AHs, thereby adjusting their insertion depth so that the curvature preference of AHs is switched from positive to negative. This study suggests that highly hydrophobic AHs could preferentially localize proteins to regions of a negative membrane curvature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call