Abstract

Chemical dyes used in the textile industries are one of the major pollutants in water. Methylene blue (MB) is a commonly seen dye that creates hazardous health problems. In this article the photocatalytic degradation of MB by the nanocatalyst MoS2 (Nano-MoS2) and carbon dot (C Dots) incorporated MoS2 (Nano-CD-MoS2) is reported. The photocatalytic degradation of MB is analyzed based on the electron-hole recombination rate of the catalyst. Photoluminescence emission exhibited by the catalyst is used as a key indicator to probe the electron-hole recombination rate. Nano-MoS2 was synthesized hydrothermally at 180 0C for 8 h from ammonium tetra thiomolybdate (ATTM). C Dot was prepared following a green root from ash guard extract which later mixed with Nano-MoS2 and kept in an autoclave at a temperature 140 °C for 4 h to get Nano-CD-MoS2. The photoluminescence (PL) and photocatalytic behavior of Nano-MoS2 and Nano-CD-MoS2 and their application for water splitting and water purification are reported. The incorporation of graphene and artificial C Dot into MoS2 nanostructures are reported to increase the conductivity and active edge sites of MoS2 that enhances the photocatalytic action. Since green C Dots are eco-friendly and easily synthesizable than artificial C Dots, as a novel study, this article investigated the influence of green C Dots on the PL and photocatalytic performance of nanosized MoS2. Nano-MoS2 and Nano-CD-MoS2 exhibited both upconversion and downconversion PL; accordingly the nanostructures were termed as amphi-luminescent. The amphi-luminescence property widens the photon absorption range and hence enhances the catalytic degradation of dyes. Nano-MoS2 which exhibited lesser intensity of amphi-luminescence emission compared to Nano-CD-MoS2 showed better results in degradation of MB. C Dots may bind with the valence band electrons of MoS2, resulting in the reduction of dangling bonds. Dangling bonds can trap photo-induced excitons to hinder the rate of electron-hole recombination. So, fast electron-hole recombination occurs in Nano-CD-MoS2 than Nano-MoS2. Fast electron-hole recombination supports radiative electron-hole recombination while suppresses the non-radiative energy transfer of electrons and causes high PL intensity. However, according to the energy level diagram, Nano-MoS2 with minimal electron-hole recombination rate is more favorable for O2/O2–,.OH/ OH– and.OH/H2O reactions that facilitate MB degradation. Photocatalytic activity of catalysts were confirmed by measuring the photocurrent from a simple custom-made two-electrode water photolysis cell where the nanocatalysts were dispersed in electrolyte. Lead and steel rods were used as electrodes. Multimeter was used to measure current. Nano-MoS2 exhibited better performance with a maximum photocurrent of 141 µA. Influence of green C Dots in energy levels, PL and photocatalysis of MoS2 and mechanisms of PL and degradation of MB are thoroughly investigated in this article.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call