Abstract

Amphibious robots can be used in both land and underwater environments, which has a wider range of applications than traditional mobile robots. However, the development of propulsion mechanisms for use in amphibious environments is very challenging. In this study, a new type of composite propulsion mechanism is presented, hinged by a plurality of deformable joints, and is suitable for amphibious environments. By changing the relative position of the rotation center of the slider chain and the rotation center of the outer track, the mechanism can be transformed between the land curved-legged state and the underwater webbed state. The mechanism has the advantages of high terrain adaptability and fast speed of curved legs when moving on land, and has good webbed flexibility when moving underwater. In this paper, aiming at the typical terrain of the amphibious environment, a new amphibious robot equipped with the propulsion mechanism is developed, and the kinematic performance of the amphibious robot is tested. The results show that the design method of composite propulsion mechanism suitable for the amphibious environment can improve amphibious robots’ kinematic performance and provide a valuable reference for the design and control of other amphibious robots.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call