Abstract

This article reports a novel electrochemical sensor based on a nanocomposite for the sensitive determination of Thyroxine (T4), the active form of the hormone. Hydrodynamic amperometry is performed with a nanocomposite electrode based on the dispersion of a graphene–based filler hybrid-nanomaterial throughout an insulating epoxy resin in the optimum composition ratio (the near–percolation composition). This hybrid-nanomaterial consists of reduced graphene oxide tuned with gold nanoparticles and a biorecognition agent, the thiolated β-cyclodextrin. Recognition of T4 is accomplished via supramolecular chemistry, due to the formation of an inclusion complex between β-cyclodextrin and T4. The amperometric device operates at +0.85 V vs. Ag/AgCl, where the oxidation of T4 takes place on the electrode surface. The sensor covers the 1.00 nM to 14 nM T4concentration range in a 0.1 M HCl solution, with a detection limit of 1.00 ± 0.02 nM. The sensor can be easily reset by polishing. It exhibits the lowest detection limit regarding to any other electrochemical electrodes for T4 determination previously described in literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.