Abstract

Amylin (the islet amyloid polypeptide) is a hormone related to adiposity, hunger and satiety. It is co-secreted with insulin from pancreatic B-cells. An amperometric immunosensor is presented here for the determination of amylin. It is making use of a screen printed carbon electrode (SPCE) functionalized with electropolymerized poly(pyrrole propionic acid) (pPPA) with abundant carboxyl groups that facilitate covalent binding of antibody against amylin. A competitive immunoassay was implemented using biotinylated amylin and streptavidin labeled with horse radish peroxidase (HRP-Strept) as the enzymatic tracer. The amperometric detection of H2O2 mediated by hydroquinone was employed as an electrochemical probe to monitor the affinity reaction. The variables involved in the preparation and function of the immunosensor were optimized and the electrodes were characterized by electrochemical impedance spectroscopy and cyclic voltammetry. The calibration graph for amylin, obtained by amperometry at -200mV vs Ag pseudo-reference electrode, showed a range of linearity extending from 1.0fg∙mL-1 to 50pg∙mL-1, with a detection limit of 0.92fg∙mL-1. This is approximately 7000 times lower than the minimum detectable concentration reported for the ELISA immunoassays available for amylin. The assay has excellent reproducibility and good selectivity over potential interferents. Graphical abstract Schematic of an amperometric competitive immunoassay for the obesity biomarker amylin using apoly(pyrrole propionic acid)-modified screen-printed electrode. The detection limit is 0.92fg∙mL-1 amylin. The method provides excellent reproducibility for the measurements, good selectivity and successful applicability to human urine and serum samples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.