Abstract

A composite nanoenzyme was used in a sandwich-type electrochemical immunoassay for the carcinoembryonic antigen (CEA). Hierarchically porous palladium nanospheres (Pd NPs) were functionalized with glutathione-capped gold nanoparticles (G-Au NPs) and then loaded onto graphene oxide (GO) to obtain a peroxidase mimicking nanoenzyme of type GO-supported G-Au/Pd. The composite can catalyze the oxidation of the substrate tetramethylbenzidine (TMB) by H2O2 to give blue-colored oxidized TMB within only 20s. This strong peroxidase activity, good conductivity and high specific surface area of the material make it a useful label for secondary antibodies (Ab2) for the detection of CEA. The cotton-like electrodeposited gold nanoparticles with good electrical conductivity were used to immobilize primary antibody (Ab1). The amperometric immunoassay has a detection range that extends from 10fg·mL-1 to 100ng·mL-1 at a working potential of -0.4V with addition of 5mmol·L-1 H2O2 as electrochemically active substrate, and the detection limit is as low as 3.2fg·mL-1 (S/N= 3). Graphical abstract Schematic of sandwich electrochemical immunosensor for the carcinoembryonic antigen. Electrodeposited gold used as substrate material, and Graphene oxide supported G-Au NPs functionalized porous Pd nanospheres (GO supported G-Au/Pd) as signal amplification platform, which catalyze the oxidation of tetramethylbenzidine (TMB).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.