Abstract

ABSTRACT The performance of a first generation glucose amperometric biosensor based on the entrapment of glucose oxidase (GOx) within a net of copper electrodeposited onto activated glassy carbon electrode, is described. The copper electrodeposited offers an efficient electrocatalytic activity towards the reduction of enzymatically-liberated hydrogen peroxide, allowing for a fast and sensitive glucose quantification. The influence of the electrodeposition conditions (pH, potential, time, copper salt and enzyme concentrations) on the response of the bioelectrode was evaluated from the amperometric signals of hydrogen peroxide and glucose. The combination of copper electrodeposition with a nation membrane allows an excellent selectivity towards easily oxidizable compounds such as uric and ascorbic acids at an operating potential of -0.050 V. The response is linear up to 2.0 × 10−2 M glucose, the detection limit being 1.2 × 10−3 M.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call