Abstract
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1–13.5 mM), a short response time (within 5 s), a large current density (1.176 mA cm −2), and high sensitivity (91 mA M −1 cm −2) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.