Abstract

A reagentless H2O2 sensor based on the direct electron transfer of myoglobin (Mb) doped in multiwalled carbon nanotubes enhanced grafted collagen matrix is proposed. The formal potential of the immobilized Mb was −0.358 V with a surface coverage of 4.0×10−10 mol cm−2. The electrode process was surface‐controlled with an electron transfer rate constant of 9.7 s−1. The proposed biosensor displayed an excellent electrocatalytic response to the reduction of H2O2 with a linear range from 0.6 to 39.0 µM. Owing to the good biocompatibility and high enzyme loading of the matrix the biosensor exhibited acceptable stability and reproducibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.