Abstract

A novel amperometric biosensor for hydrogen peroxide (H(2)O(2)) was developed by entrapping horseradish peroxidase (HRP) in a new ormosil composite doped with ferrocene monocarboxylic acid-bovine serum albumin conjugate and multiwall carbon nanotubes (MWNTs). The ormosil was prepared using 3-(aminopropyl)triethoxysilane and 2-(3,4 epoxycyclohexyl)-ethyltrimethoxy silane as monomers. The encapsulated conjugate showed excellent electrochemistry and acted as an electron transfer mediator. The presence of MWNTs improved the conductivity of the composite film. This matrix showed a biocompatible microenvironment for retaining the native activity of the entrapped HRP and a very low mass transport barrier to the substrate, which provided a fast amperometric response to H(2)O(2). The proposed H(2)O(2) biosensor exhibited a linear range of 0.02-4.0 mM with a detection limit of 5.0 microM (S/N = 3) and a K(M)(app) value of 2.0 mM. It could be used for flow injection analysis of hydrogen peroxide with a liner range from 0.02 to 4.5 mM, sensitivity of 0.042 microA/mM and analytical time of 20 s per sample. This biosensor possessed good analytical performance and storage stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.