Abstract

The paper presents a novel fiber-optic vector magnetic field sensor using a Fabry-Perot interferometer, which consists of an optical fiber end face and a graphene/Au membrane suspended on the ceramic ferrule end face. A pair of gold electrodes are fabricated on the ceramic ferrule by femtosecond laser to transmit electrical current to the membrane. Ampere force is generated when an electrical current flows through the membrane in a perpendicular magnetic field. The change in Ampere force causes a shift in the resonance wavelength in the spectrum. In the magnetic field intensity range of 0 ∼ 180 mT and 0 ∼ -180 mT, the as-fabricated sensor exhibits magnetic field sensitivity of 5.71 pm/mT and 8.07 pm/mT. The proposed sensor has great potential application in weak magnetic field measurements due to its compact structure, cost-effectiveness, ease to manufacture, and good sensing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call