Abstract

Ampelopsin (AMP) had a wound-healing effect in rat skin wounds with or without purulent infection. However, the role of AMP in diabetic wound healing remains poorly defined. Wounds were created on the dorsal skin of type 2 diabetic mouse model, and the histological features of wounds were examined by hematoxylin and eosin (HE) staining. Caspase-1 activity and the secretion of inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). Cell viability and migration were examined through cell counting kit-8 (CCK-8) and wound healing assays, respectively. AMP facilitated wound healing in vivo. AMP notably facilitated platelet endothelial cell adhesion molecule-31 (CD31), collagen type I alpha 1 chain (COL1A1), and alpha-smooth muscle actin (α-SMA), and inhibited matrix metallopeptidase 9 (MMP9) and cyclooxygenase 2 (Cox2) expression in diabetic wounds. The inflammasome pathway was implicated in skin injury. AMP inhibited pro-inflammatory factor secretions and NLR family pyrin domain containing 3 (NLRP3) inflammasome pathway in diabetic wounds and high glucose-treated THP-1 macrophages. AMP-mediated NLRP3 inflammasome inhibition in THP-1 macrophages increased cell viability and migratory capacity in HaCaT cells. AMP facilitated diabetic wound healing and increased keratinocyte cell viability and migratory ability by inhibiting the NLRP3 inflammasome pathway in macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.