Abstract

Endothelial progenitor cells (EPCs) play an essential role in angiogenesis but are functionally impaired in diabetes. We recently reported that decreased expression of manganese superoxide dismutase (MnSOD) critically contributes to diabetic EPC dysfunction. AMP-activated protein kinase (AMPK) activation has been shown to induce MnSOD and suppress hyperglycemia-induced mitochondrial ROS production in endothelial cells. However, whether AMPK protects EPCs from oxidative stress in diabetes is unknown. We tested the hypothesis that AMPK activation rescues impaired EPC functions through MnSOD induction in type 1 diabetes. Bone marrow-derived EPCs from adult male streptozotocin-induced diabetic mice and normal controls were used. AMPK activity was decreased in diabetic EPCs, indicated by reduced AMPK and acetyl-CoA carboxylase phosphorylation. AMPK activation by treating diabetic EPCs with its selective agonist AICAR rescued their in vitro functions, including Matrigel tube formation, adhesion, and migration. Furthermore, AICAR restored the decreased MnSOD protein and enzymatic activity and suppressed the mitochondrial superoxide level in diabetic EPCs, indicated by MitoSOX flow cytometry. These beneficial effects of AICAR on MnSOD and EPC functions were significantly attenuated by silencing MnSOD or AMPK antagonist compound C pretreatment. Finally, the expression of protein phosphatase 2A, a key enzyme for AMPK dephosphorylation and inactivation, was increased in diabetic EPCs, and its inhibition by siRNA or okadaic acid reversed the deficient AMPK activation and MnSOD level in diabetic EPCs. These findings demonstrate for the first time that AMPK activation rescues impaired EPC functions and suppresses mitochondrial superoxide by inducing MnSOD in type 1 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.