Abstract
Positive modulators of AMPA receptors enhance synaptic plasticity and memory encoding. Facilitation of AMPA receptor currents not only results in enhanced activation of excitatory neurons but also increases the activity of inhibitory interneurons by up-modulating their excitatory input. However, little is known about the effects of these modulators on cells other than pyramidal neurons and about their impact on local microcircuits. This study examined the effects of members from three subfamilies of modulators (mainly CX516, CX546 and cyclothiazide) on excitatory synaptic responses in four classes of hippocampal CA1 neurons and on excitatory and disynaptically induced inhibitory field potentials in hippocampal slices. Effects on excitatory postsynaptic currents (EPSCs) were examined in pyramidal cells, in two types of inhibitory interneurons located in stratum radiatum and oriens, and in stratum radiatum giant cells, a novel type of excitatory neuron. With CX516, increases in EPSC amplitude in pyramidal cells were two to three times larger than in interneurons and six times larger than in radiatum giant cells. The effects of CX546 on response duration similarly were largest in pyramidal cells. However, this drug also strongly differentiated between stratum oriens and radiatum interneurons with increases being four times larger in the latter. In contrast, cyclothiazide had similar effects on response duration in all cell types. In field recordings, CX516 was several times more potent in enhancing excitatory postsynaptic potentials (EPSPs) than feedback or feedforward circuits, as expected from its larger influence on pyramidal cells. In contrast, BDP-20, a CX546 analog, was more potent in enhancing feedforward inhibition than either EPSPs or feedback inhibition. This preference for feedforward over feedback circuits is probably related to its higher potency in stratum radiatum versus oriens interneurons. Taken together, AMPA receptor modulators differ substantially in their potency and/or efficacy across major classes of neurons which is likely to have consequences with regard to their impact on circuits and behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.