Abstract

Exposure to both sustained and intermittent hypoxia for as little as a day produces sustained augmentation of carotid chemoreceptor sensitivity; however, the molecular basis for this chemoreflex plasticity remains uncertain. We previously reported that NMDA receptor-dependent glutamatergic signaling in rat carotid body played a role in altered hypoxic sensitivity after exposure to cyclic intermittent hypoxia (CIH). Here we found that mRNAs of multiple AMPA and Kainate glutamate receptors were expressed in rat carotid body. The AMPA receptor subunit GluR1 showed intense immunoreactivity in the carotid body, co-localizing with tyrosine hydroxylase in type I cells. Treatment of rat carotid body-derived primary cells with AMPA activated ERK1/2 in a time-dependent manner. Exposing Sprague–Dawley rats to CIH for 8 h/day for 3 weeks significantly enhanced the expression level of GluA1 mRNA as well as GluR1 protein in the carotid body. In addition, our results showed that multiple of vesicular glutamate transporters (VGLUTs) and excitatory amino acid transporters (EAATs) were expressed in the rat carotid body, indicating that glutamate might be as a neurotransmitter stored, released and uptake in the carotid body. Finally, we found that mRNAs of GluA1, GluA2 and GluA3 as well as PSD-95-like membrane-associated granulate kinase family members, PSD-95, PSD-93, and SAP97, were expressed in human carotid body. Our data suggest AMPA receptor-dependent glutamatergic signaling is present in the carotid body and might be involved in the carotid chemoreceptor response to hypoxia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.