Abstract

The misuse of antibiotics contributes to the emergence of multidrug-resistant (MDR) bacteria. Infections caused by MDR bacteria are rapidly evolving into a significant threat to global healthcare due to the lack of effective and safe treatments. Antimicrobial peptides (AMPs) with broad-spectrum antibacterial activity kill bacteria generally through a membrane disruption mechanism; hence, they tend not to induce resistance readily. However, AMPs exhibit disadvantages, such as high cost and susceptibility to proteolytic degradation, which limit their clinical application. AMP-mimetic antimicrobial polymers, with low cost, stability to proteolysis, broad-spectrum antimicrobial activity, negligible antimicrobial resistance, and rapid bactericidal effect, have received extensive attention as a new type of antibacterial drugs. Lately, AMP-mimetic polymer-involved synergic therapy provides a superior alternative to combat MDR bacteria by distinct mechanisms. In this Review, we summarize the AMP-mimetic antimicrobial polymers involved in synergic therapy, particularly focusing on the different combinations between the polymers with commercially available antimicrobials, organic small molecule photosensitizers, inorganic nanomaterials, and nitric oxide.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call