Abstract

Abstract. The Schäfertal Hillslope site is part of the TERENO Harz/Central German Lowland Observatory, and its soil water dynamics are being monitored intensively as part of an integrated, long-term, multi-scale, and multi-temporal research framework linking hydrological, pedological, atmospheric, and biodiversity-related research to investigate the influences of climate and land use change on the terrestrial system. Here, a new soil monitoring network, indicated as STH-net, has been recently implemented to provide high-resolution data about the most relevant hydrological variables and local soil properties. The monitoring network is spatially optimized, based on previous knowledge from soil mapping and soil moisture monitoring, in order to capture the spatial variability in soil properties and soil water dynamics along a catena across the site as well as in depth. The STH-net comprises eight stations instrumented with time-domain reflectometry (TDR) probes, soil temperature probes, and monitoring wells. Furthermore, a weather station provides data about the meteorological variables. A detailed soil characterization exists for locations where the TDR probes are installed. All data have been measured at a 10 min interval since 1 January 2019. The STH-net is intended to provide scientists with data needed for developing and testing modelling approaches in the context of vadose-zone hydrology at spatial scales ranging from the pedon to the hillslope. The data are available from the EUDAT portal (https://doi.org/10.23728/b2share.82818db7be054f5eb921d386a0bcaa74, Martini et al., 2020).

Highlights

  • Soils are embedded in the environment, coupled to vegetation and atmosphere at the land surface and to groundwater at its lower end

  • One aspect that complicates the picture is the heterogeneity of soil properties. Another one is the non-linearity of soil processes

  • The approach followed at the site accounts for the soil spatial variability through detailed soil mapping and is designed to provide in situ data with high-temporal-resolution and dense coverage in the vertical direction about the soil water dynamics in the vadose zone and of its boundary conditions. With this design tailored to the needs of vadose zone modelling, we aim to provide physical models with ideally all the data needed for quantifying and predicting the soil water fluxes at spatial scales ranging from the pedon to the hillslope scale, with important implications in terms of methodological advance and process understanding for catchmentscale processes

Read more

Summary

Introduction

Soils are embedded in the environment, coupled to vegetation and atmosphere at the land surface and to groundwater at its lower end. Vogel (2019) provided a comprehensive discussion about the scales and scaling issues in the context of soil hydrological research and noted the need for looking at small-scale soil properties (i.e. at the pedon scale, at which soil physics is capable of describing states and fluxes with sufficient accuracy) as a necessary step towards understanding and summarizing the processes at larger scales In this respect, the author stresses the need for a two-step approach based on the accurate description of the soil water dynamics at the pedon scale and accounting for the spatial patterns of functional soil types that constitute the landscape, including the vertical stratification of soil hydraulic properties and structural attributes. In the research framework of the TERENO Harz/Central German Lowland Observatory, the Schäfertal Hillslope represents a benchmark site for developing and testing the integration of state-of-the-art monitoring techniques with advanced modelling approaches This offers the opportunity to gain a more detailed understanding of processes and to quantify and predict water and matter fluxes at nested spatial scales in the context of climate and land use change. The data set includes hourly time series of the meteorological forcing, soil water content measured in situ at different locations and at multiple soil depths along a hillslope transect, and soil physical and physicochemical properties

Site description
Monitoring design and measurement techniques
TDR measurements
Soil temperature
Water level
Meteorological data
Soil properties
Uncertainties and data usability
Data management
Findings
Data sets
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.