Abstract

Owing to its critical role in the regulation of skeletal muscle metabolism, AMP-activated protein kinase (AMPK) remains a central focus of research for the treatment of insulin resistance. The purpose of the present study was to determine the role of AMPKα2 activity in the regulation of glucose uptake and fatty acid (FA) metabolism in insulin-resistant skeletal muscle. Male C57BL/6 mice were divided into groups fed a control diet (CD) or high-fat (60%) diet (HFD) for 6 weeks and were either wild-type (WT) or possessed an AMPKα2 dominant negative transgene (DN). After 6 weeks, hindlimbs of CD (n = 10) and HFD mice (n = 10) were perfused with or without 450 μU ml(-1) insulin. Muscles of CD (n = 8) and HFD mice (n = 8) were used for measurement of basal protein expression. In CD mice, low AMPKα2 activity did not affect basal FA uptake (FAU), but it increased basal FA oxidation (FAO) by 28% and prevented the typical insulin-mediated increase in FAU and decrease in FAO. In HFD-fed mice, low AMPKα2 activity increased basal FAU by 147% (P < 0.05). In both WT and DN mice, HFD abolished the typical insulin-mediated increase in FAU and decrease in FAO. In HFD-fed mice, low AMPKα2 activity increased SIRT1 activity and decreased Protein Tyrosine Phosphatase 1B (PTP1B) expression and Akt(Thr308) phosphorylation (P < 0.05). Adipose tissue protein expression of interleukin-6 and tumour necrosis factor α was increased by HFD in WT mice but not in DN mice (P < 0.05). Skeletal muscle interleukin-15 expression was decreased in both feeding conditions in the DN mice (P < 0.05). The data from this study suggest that in insulin-resistant conditions low AMPKα2 activity impacts the regulation of skeletal muscle FA metabolism via changes in SIRT1 activity, PTP1B expression and Akt phosphorylation and the expression of adipose tissue pro-inflammatory markers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call