Abstract

This study aimed to reveal how amoxicillin (AMX) affected the microbial community and the spread mechanism of antibiotic resistance genes (ARGs) in the AMX manufacture wastewater treatment system. For this purpose, a 1.47 L expanded granular sludge bed (EGSB) reactor was designed and run for 241days treating artificial AMX manufacture wastewater. 454 pyrosequencing was applied to analyze functional microorganisms in the system. The antibiotic genes OXA-1, OXA-2, OXA-10, TEM-1, CTX-M-1, class I integrons (intI1) and 16S rRNA genes were also examined in sludge samples. The results showed that the genera Ignavibacterium, Phocoenobacter, Spirochaeta, Aminobacterium and Cloacibacillus contributed to the degradation of different organic compounds (such as various sugars and amines). And the relative quantification of each β-lactam resistance gene in the study was changed with the increasing of AMX concentration. Furthermore the vertical gene transfer was the main driver for the spread of ARGs rather than horizontal transfer pathways in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.