Abstract
In this study, we prepared and analyzed the properties of hills-like hierarchically structured TiO 2 photoanodes for dye-sensitized solar cells (DSSCs). We expected that the presence of appropriately aggregated TiO 2 clusters in the photoanode layer would translate in a relatively strong light scattering and dye loading, increasing the photovoltaic efficiency. A detailed light-harvesting study was performed by employing polyvinyl alcohol (PVA) polymers of different molecular weights as binders for the aggregation of the TiO2 nanoparticles (P-25 Degussa). Hence, we obtained a series of TiO 2 films presenting a variety of morphologies. Their reflection, as well as the absorbance of the attached dye, the amount of dye loading, and the performance of the fabricated DSSC devices were investigated. Our optimized device presenting a relatively high dye loading and well light harvesting ability, and able to enhance the short-circuit current (J sc ) in the DSSCs by 23%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.