Abstract

AbstractInterface engineering shows distinct advantages in the electrocatalytic hydrogen evolution reaction (HER) due to the unique structures that can be realized. The interfaces formed by amorphous materials often exhibit special properties that are beneficial for the HER. Herein, an amorphous/crystalline Rh(OH)3/CoP heterostructure is constructed, which exhibits outstanding HER performance in the all‐pH range. It only needs the overpotentials of 13, 12, and 25 mV to drive a current density of 10 mA cm−2 in alkaline, acidic, and neutral media, respectively, which ranks as one of the best HER electrocatalysts reported recently. The outstanding HER activities in the all‐pH range are attributed to the unique amorphous/crystalline heterostructure of Rh(OH)3/CoP, which possesses special hydrophilic/aerophobic features thataccelerate mass transfer, and provide abundant exposed active sites and appropriate defects. Importantly, the performance attenuation mechanism of the catalyst is also revealed, i.e., the formation of Rh aggregations leads to poor contact and efficacy loss of the amorphous/crystalline interface for HER. In short, this work provides a new idea for using amorphous/crystalline heterostructure to design electrocatalysts, not only for the HER, but also for the oxygen reduction and oxygen evolution reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.