Abstract

AbstractA new strategy for developing dye‐sensitised solar cells (DSSCs) by combining thin porous zinc tin oxide (Zn2SnO4) fiber‐based photoelectrodes with purely organic sensitizers is presented. The preparation of highly porous Zn2SnO4 electrodes, which show high specific surface area up to 124 m2/g using electrospinning techniques, is reported. The synthesis of a new organic donor‐conjugate‐acceptor (D‐π‐A) structured orange organic dye with molar extinction coefficient of 44 600 M−1 cm−1 is also presented. This dye and two other reference dyes, one organic and a ruthenium complex, are employed for the fabrication of Zn2SnO4 fiber‐based DSSCs. Remarkably, organic dye‐sensitized DSSCs displayed significantly improved performance compared to the ruthenium complex sensitized DSSCs. The devices based on a 3 μm‐thick Zn2SnO4 electrode using the new sensitizer in conjunction with a liquid electrolyte show promising photovoltaic conversion up to 3.7% under standard AM 1.5G sunlight (100 mW cm−2). This result ranks among the highest reported for devices using ternary metal oxide electrodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.