Abstract

Carboxymethyl cellulose (CMC) is one of the most widely used thickening agents in industry. The combination of small-angle X-ray scattering (SAXS), static and dynamic light scattering, as well as viscosity measurements and microscopy at different pH values was utilized to explore the physicochemical properties of CMC on a scale ranging from individual macromolecules to supramolecular assemblies. The supramolecular structure of CMC was represented as a set of characteristic sample subspaces based on SAXS data utilizing the string-of-beads model. The results indicate that at pH 7.0 individual CMC molecules are approximately uniformly distributed in a supramolecular structure owing to strong intra- and intermolecular repulsive interactions. The structure of CMC is most expanded at the value of pKa, where it has the largest radius of gyration, persistence length, and size of heterogeneous regions. Below pKa the majority of the CMC sample volume belongs to the low density subspaces. Most of CMC molecules, however, reside in a few high density subspaces. Dynamically, supramolecular structure of CMC is composed of fast diffusive relaxation processes embedded in a background of non-diffusive slow relaxation process at high pH and mostly slow relaxation processes at low pH. The rheological properties of CMC at different pH values were directly related to the CMC supramolecular structure in the aqueous environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call