Abstract

A new amorphous silicon waveguide is realized by use of amorphous silicon carbon as cladding material. The structure is characterized both experimentally and theoretically, and its application for optical interconnections in photonic integrated circuits on silicon motherboards is proposed. The fabrication process is based on low-temperature (220 degrees C) plasma-enhanced chemical-vapor deposition and is compatible with standard microelectronic processes. Propagation losses of 1.8 dB/cm have been measured at the fiber-optic wavelength of 1.3 microm. A strong thermo-optic coefficient has been measured in this material at this wavelength and exploited for the realization of a light-intensity modulator based on a Fabry-Perot interferometer that is tunable by temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call