Abstract

Abstract In this work, we demonstrate that the amorphous silica-alumina composite (ASA) is an efficient solid acid for the steam reforming of dimethyl ether (SRD). Thus, a series of ASA with different Si/Al molar ratios was synthesized via the modified hydrolytic method by using Al(NO3)3·9H2O and/or NaAlO2 as Al precursor and tetraethoxysilane as Si precursor, respectively. Irrespective of the synthesis conditions, all of ASA composites were in an amorphous nature. However, both the acidity and the surface area were significantly affected by the synthesis conditions, the extent of which depends on the specific precursor and Si/Al molar ratios. The ASA physically mixed with a commercial Cu/ZnO/Al2O3 was investigated as a bifunctional catalyst for SRD under the conditions of P=0.1 MPa and gas hourly space velocity of 4000 h−1. Results indicate that both the conversion of dimethyl ether (DME) and the hydrogen yield were strongly dependent on the acidic property of ASA and the ASA to Cu/ZnO/Al2O3 ratios. Following the two-step consecutive mechanism of SRD, the catalytic results were well explained based on the acidic property of ASA, and the synergetic effect between the two catalytic functions was found to play a crucial role in determining the activity and stability of the bifunctional catalyst. Moreover, the DME hydrolysis was revealed to be the rate-limiting step for SRD reactions in the case of ASA as an acidic catalyst. By optimizing the synthesis conditions of ASA and the composition of the bifunctional catalyst, greater than 99% of DME conversion and hydrogen yield was achieved, and was kept for a time on stream of 66 h without an observable decrease. Thus, ASA is a very efficient solid acid for SRD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.