Abstract
Antimony sulfide (Sb2S3) with a high theoretical capacity is considered as a promising candidate for Na-ion batteries (NIBs) and K-ion batteries (KIBs). However, its poor electrochemical activity and structural stability are the main issues to be solved. Herein, amorphous Sb2S3 nanospheres/carbon nanotube (Sb2S3/CNT) nanocomposites are successfully synthesized via one step self-assembly method. In-situ growth of amorphous Sb2S3 nanospheres on the CNTs is confirmed by X-ray diffraction, field-emission scanning electron microscopy, and transmission electron microscopy. The amorphous Sb2S3/CNT nanocomposites as an anode for NIBs exhibit excellent electrochemical performance, delivering a high charge capacity of 870 mA h g−1 at 100 mA g−1, with an initial coulomb efficiency of 77.8%. Even at 3000 mA g−1, a charge capacity of 474 mA h g−1 can be achieved. As an anode for KIBs, the amorphous Sb2S3/CNT nanocomposites also demonstrate a high charge capacity of 451 mA h g−1 at 25 mA g−1. The remarkable performance of the amorphous Sb2S3/CNT nanocomposites is attributed to the synergic effects of the amorphous Sb2S3 nanospheres and 3D porous conductive network constructed by the CNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nanomaterials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.