Abstract

Electrocatalytic hydrogen evolution reaction (HER) is an efficient way to generate hydrogen fuel for the storage of renewable energy. Currently, the widely used Pt-based catalysts suffer from high costs and limited electrochemical stability; therefore, developing an efficient alternative catalyst is very urgent. Herein, one pot hydrothermal synthesis is reported of amorphous ruthenium-sulfide (RuSx ) nanoparticles (NPs) supported on sulfur-doped graphene oxide (GO). The as-obtained composite serves as a Pt-like HER electrocatalyst. Achieving a current density of -10 mA cm-2 only requires a small overpotential (-31, -46, and -58 mV in acidic, neutral, and alkaline electrolyte, respectively) with high durability. The isolated Ru active site inducing Volmer-Heyrovsky mechanism in the RuSx NPs is demonstrated by the Tafel analysis and X-ray absorption spectroscopy characterization. Theoretical simulation indicates the isolated Ru site exhibits Pt-like Gibbs free energy of hydrogen adsorption (-0.21 eV) therefore generating high intrinsic HER activity. Moreover, the strong bonding between the RuSx and S-GO, as well as pH tolerance of RuSx are believed to contribute to the high stability. This work shows a new insight for amorphous materials and provides alternative opportunities in designing advanced electrocatalysts with low-cost for HER in the hydrogen economy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call