Abstract
The discovery of localized surface plasmon resonance (LSPR) in semiconductor nanocrystals has initiated a new field in plasmonics. Plasmonic nanocrystals in particular have seen rapid development in recent years because they are a class of materials with unique photoelectronic properties. At present, a growing number of amorphous plasmonic materials has been steadily capturing scientific interest, though only a few of these are well characterized. Here we focus on recent developments in state-of-the art experiments and explore the vast library of plasmonic properties in amorphous materials, including their application fields and optical spectral range. Taken together, the growing regime of amorphous material plasmonics offers enticing avenues for harnessing light-matter interactions from the visible to the terahertz region, with new potential for optical manipulation beyond what can be accomplished using traditional crystal materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.