Abstract

Amorphous InGaZnO4 neuron transistors based on multi-gate electric-double-layer modulation are fabricated by photolithography processes. The sweeping rate dependent output current and hysteresis loop are observed due to the proton dynamic process in the SiO2 nanogranular electrolyte. Temporal summation such as paired-pulse facilitation is mimicked in the neuron transistor with one presynaptic input. At the same time, supralinear spatial summation of two presynaptic inputs is also successfully mimicked in the neuron transistor with two presynaptic inputs. Our InGaZnO4 neuron transistors with temporal and spatial summation function are interesting for the brain-inspired neuromorphic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.