Abstract

The activity of iron oxyhydroxides (FeOOH) in oxygen evolution reaction (OER) is limited by their poor conductivity and the high energy barrier in the rate-determining step. Herein, we report the immobilization of atomic dispersed Pd species on Co doped FeOOH, realizing the preparation of amorphous hetero-structure FeCoaOOH-Pdb. In the case of Co/Fe of 0.68 and Pd/Fe of 0.026, the coexisting structure of nanorods and nanospheres with appropriate oxygen vacancies and unsaturated active centers increases the number of active sites and enhances the intrinsic activity of the electrocatalyst. The density functional theory results uncover that the FeCo0.68OOH-Pd0.026 optimizes the binding energies of *O and *OOH, and accelerates the OER kinetics. The rationally designed FeCo0.68OOH-Pd0.026 exhibits excellent OER activity and reliability, manifesting a Tafel slope of 37.5 mV dec−1, a low overpotential of 265.1 mV at 10 mA cm−2, which has the potential to realize the large-scale implementation of water splitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.