Abstract

ABSTRACTThis work presents unique microstructure and thermal properties of the Fe55Ni20Cu5P10Si5B5 alloy produced by novel modification of the melt-spinning method, where two precursor alloys are simultaneously ejected i.e. Fe40Ni40P10Si5B5 and Fe70Cu10P10Si5B5, forming a composite ribbon. The investigation of melting the precursors by differential scanning calorimetry confirms the liquid miscibility of the Fe70Cu10P10Si5B5 alloy. The two-component melt-spun composite obtained from the two alloys is compared to the alloys produced from a homogeneous liquid. The electron microscopy, X-ray diffraction and differential scanning calorimetry show different microstructure of the composite in comparison with the traditionally melt-spun alloys and our results reveal that the composite alloy inherits the thermal properties of the precursors.This paper is part of a Thematic Issue on The Crystallographic Aspects of Metallic Alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call