Abstract

The purpose of this study was to investigate the correlation between amorphous content and the characteristics of micrometer-sized photocatalyst particles. As a model of photocatalyst, tungsten trioxide (WO3) particles with controllable amorphous contents were used. To comprehend the amorphous content parameter precisely, the experiments were conducted by heating amorphous WO3 powders at a specific temperature without additional chemicals or solvents. Thus, the percentage of amorphous in the WO3 particles was controlled independently in the constant particle outer sizes and morphology. Micrometer-sized catalyst was used to avoid the misleading photocatalytic measurements due to the over-dominancy of other catalytic parameters (such as excessive surface area and quantum confinement effect). The results revealed that in the constant process condition, the photocatalytic properties were strongly dependent on the amorphous content in the catalyst. Decreases in this parameter had a strong influence to the enhancement of the photodecomposition rate of organic material. The tendency for the influence of amorphous content was also confirmed by varying the number of catalysts in the photocatalytic process. The study was also completed with the theoretical consideration for the phenomenon happening during the WO3 crystallization (transformation of amorphous into hexagonal and monoclinic crystal structure) and the photocatalytic process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.