Abstract

Herein, a novel amorphous monodisperse Co3O4 quantum dots/3D hexagonal CdS single crystals (0D/3D Co3O4 QDs/CdS) p-n heterojunction was constructed by a simple hydrothermal and electrostatic self-assembly method. The amorphous monodispersed Co3O4 QDs (≈4.5 nm) are uniformly and tightly attached to the surface of the hexagonal CdS single crystals. The sample, 0.5% CQDs/CdS exhibits outstanding hydrogen evolution activity of 17.5 mmol h-1 g-1 with a turnover number (TON) of 4214, up to 10.3 times higher than that of pure CdS. The enhanced photocatalytic activity can be attributed to the synergistic effect of the p-n heterostructure and the quantum confinement effect of Co3O4 QDs, which significantly promoted the separation efficiency of photo-generated electrons and holes. Additionally, the sulfur vacancy also can act as electron trappers to improve carrier separation and electron transfer. The photoelectrochemical and time-resolved fluorescence (TRPL) results further certify the effective spatial charge separation. This work gives an insight into the design of the 0D/3D Co3O4 QDs/CdS p-n heterostructure for a highly efficient photocatalysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call