Abstract

Hybridized zirconium amorphous calcium phosphate (ACP)-filled methacrylate composites make good calcium and phosphate releasing materials for anti-demineralizing/remineralizing applications with low mechanical demands. The objective of this study was to assess the effect of the particle size of the filler on the mechanical properties of these composites. Photo-curable resins were formulated from ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Camphorquinone and ethyl-4-N,N-dimethylaminobenzoate were utilized as components of the photoinitiator system. After 2 h of mechanical milling in isopropanol, an approximate 64 % reduction in the median particle diameter was observed [27.48 μm vs. 9.98 μm] for unmilled and milled wet ACP, respectively. Dry ACP showed a 43 % reduction in particle size from pre- to post-milling. As well as dry composites, those that had been immersed in aqueous media were evaluated for their Young's Modulus, water sorption, biaxial tensile, three-point flexural and diametral tensile strength. Mechanically milling the filler increased the volume of fine particles in the composite specimens, resulting in a more homogeneous intra-composite distribution of ACP and a reduction in voids. In turn, less water diffused into the milled composites upon aqueous exposure, and they showed a marked improvement in biaxial flexure strength and a moderate improvement in flexural strength over composites with unmilled ACP. The demonstrated improvement in the mechanical stability of milled Zr-ACP composites may help in extending their dental applicability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call