Abstract
The von Neumann architecture has faced challenges requiring high-fulfillment levels due to the performance gap between its processor and memory. Among the numerous resistive-switching random-access memories, the properties of hexagonal boron nitride (BN) have been extensively reported, but those of amorphous BN have been insufficiently explored for memory applications. Herein, we fabricated a Pt/BN/TiN device utilizing the resistive switching mechanism to achieve synaptic characteristics in a neuromorphic system. The switching mechanism is investigated based on the I-V curves. Utilizing these characteristics, we optimize the potentiation and depression to mimic the biological synapse. In artificial neural networks, high-recognition rates are achieved using linear conductance updates in a memristor device. The short-term memory characteristics are investigated in depression by controlling the conductance level and time interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.