Abstract

Rational design of noble metal catalysts with the potential to leverage efficiency is vital for industrial applications. Such an ultimate atom-utilization efficiency can be achieved when all noble metal atoms exclusively contribute to catalysis. Here, we demonstrate the fabrication of a wafer-size amorphous PtSex film on a SiO2 substate via a low-temperature amorphization strategy, which offers single-atom-layer Pt catalysts with high atom-utilization efficiency (~26 wt%). This amorphous PtSex (1.2 < x < 1.3) behaves as a fully activated surface, accessible to catalytic reactions, and features a nearly 100% current density relative to a pure Pt surface and reliable production of sustained high-flux hydrogen over a 2 inch wafer as a proof-of-concept. Furthermore, an electrolyser is demonstrated to generate a high current density of 1,000 mA cm−2. Such an amorphization strategy is potentially extendable to other noble metals, including the Pd, Ir, Os, Rh and Ru elements, demonstrating the universality of single-atom-layer catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call