Abstract

The surface of Ni61 Nb39 crystalline ingot was treated by laser surface melting with different processing parameters. A fully amorphous layer with a thickness of approximately 10 μm could be produced on the top surface under optimal parameters. An amorphous-crystalline composite layer with the depth from 10 to 50 μm, consisting of amorphous matrix and intermetallic phases of Ni3Nb and Ni6Nb7, could be formed. The micro-hardness (about 831 HV) of the treated surface was remarkably improved by nearly 100% compared with the value of the crystalline substrate caused by the formation of the fully amorphous structure. A finite volume simulation was adopted to evaluate the temperature distribution in the laser-affected zone of Ni61 Nb39 alloys and to reveal the mechanism of glass formation in the laser-affected zone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.