Abstract

Ice VIII is a high-density form of ${\mathrm{H}}_{2}\mathrm{O}$ that amorphizes upon heating after being decompressed to 0 kbar. Here we investigate by first principles the structural and vibrational properties of ice VIII under decompression. We have reproduced the peculiar nonlinear behavior of some stretching and translational modes under decompression and relate this behavior to the eminent collapse of the hydrogen-bond networks. We also find that the transverse acoustic phonon branches almost collapse and are nearly unstable at 0 kbar. This is the sign of imminent amorphization, similar to that uncovered in $\ensuremath{\alpha}$-quartz under pressure near the amorphous transition. By means of quasi-harmonic free energy calculations we also investigate its thermal equation of state and show, for the first time, the effect of zero point motion and temperature on its structure. The level of agreement between theoretical and experimental results is unprecedented in this class of materials. This is crucial to clarifying the relationship between amorphization and acoustic phonon collapse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.